面向对象的计算几何模板
写了四天的模板,纯手打,有了板子过题实在是爽。
#include<bits/stdc++.h> //#include<cstdio> //#include<cmath> //#include<algorithm> using namespace std; typedef long double lod; typedef long long ll; typedef long double ld; const ld eps=1e-8; const ld pi=acos(-1.0); int sgn(ld x) { if (x<-eps) return -1; if (x>eps) return 1; return 0; } struct P; //点,向量 struct LINE; //线段,射线,直线; struct CIRCLE; struct TRIANGLE; struct POLYGON; void kr(ld &x) { double t; scanf("%lf",&t); x=t; } void kr(ll &x) { scanf("%lld",&x); } struct P { lod x,y; void read() { kr(x); kr(y); } P operator+(const P &t)const { return {x+t.x,y+t.y}; } P operator-(const P &t)const { return {x-t.x,y-t.y}; } P operator*(ld t)const { return {x*t,y*t}; } P operator/(ld t)const { return {x/t,y/t}; } lod operator*(const P &t)const { return x*t.y-y*t.x; } //叉积 lod operator%(const P &t)const { return x*t.x+y*t.y; } //点积 bool operator<(const P &t)const { return sgn(x-t.x)<0||sgn(x-t.x)==0&&sgn(y-t.y)<0; } bool operator==(const P &t)const { return sgn(x-t.x)==0&&sgn(y-t.y)==0; } ld ang()const { return atan2(y,x); } ld length()const { return sqrt(x*x+y*y); } P rotate(const P &t,ld sita)const { return {(x-t.x)*cos(sita)-(y-t.y)*sin(sita)+t.x, (x-t.x)*sin(sita)+(y-t.y)*cos(sita)+t.y}; } //逆时针转sita ld btang(const P &t)const { return acos( (*this%t)/length()/t.length() ); } //向量夹角 P midvec(const P &t)const { return (*this)/length()+t/t.length(); } //角平分向量 }; struct LINE { P p1,p2; void read() { p1.read(); p2.read(); } LINE midLINE() { P midp=(p1+p2)/2; P v=p2-p1; v=v.rotate({0,0},pi/2); return {midp,midp+v}; } //中垂线 bool have1(const P &p)const { return sgn( (p-p1)*(p-p2) )==0&&sgn( (p-p1)%(p-p2) )<=0; } //线段上有点 bool have2(const P &p)const { return sgn( (p-p1)*(p-p2) )==0&&sgn( (p-p1)%(p2-p1) )>=0; } //射线上有点 bool have3(const P &p)const { return sgn( (p-p1)*(p-p2) )==0; } //直线上有点 lod areawith(const P &p)const { return abs( (p1-p)*(p2-p)/2 ); } //线段和点围成面积 P vecfrom(const P &p)const { P v=(p2-p1); v=v.rotate({0,0},pi/2); ld s1=(p1-p)*(p2-p); ld s2=v*(p2-p1); v=v*(s1/s2); return v; }//点到直线垂足的向量 P footfrom(const P &p)const { P v=vecfrom(p); return p+v; } //点到直线垂足 ld dis1from(const P &p)const { P foot=footfrom(p); if (have1(foot)) return (foot-p).length(); return min( (p1-p).length(),(p2-p).length()); }//点到线段距离 ld dis2from(const P &p)const { P foot=footfrom(p); if (have2(foot)) return (foot-p).length(); return (p1-p).length(); }//点到射线距离 ld dis3from(const P &p)const { return vecfrom(p).length(); }//点到直线距离 P symP(const P &p)const { P v=vecfrom(p); return p+v*2; } //点关于直线的对称点 //1线段 2射线 3直线 bool isct11(const LINE &L)const { P a1=p1,a2=p2; P b1=L.p1,b2=L.p2; if (sgn( max(a1.x,a2.x)-min(b1.x,b2.x) )<0|| sgn( max(b1.x,b2.x)-min(a1.x,a2.x) )<0|| sgn( max(a1.y,a2.y)-min(b1.y,b2.y) )<0|| sgn( max(b1.y,b2.y)-min(a1.y,a2.y) )<0) return 0; lod tmp1=(a2-a1)*(b1-a1); lod tmp2=(a2-a1)*(b2-a1); if (sgn(tmp1)<0&&sgn(tmp2)<0||sgn(tmp1)>0&&sgn(tmp2)>0) return 0; tmp1=(b2-b1)*(a1-b1); tmp2=(b2-b1)*(a2-b1); if (sgn(tmp1)<0&&sgn(tmp2)<0||sgn(tmp1)>0&&sgn(tmp2)>0) return 0; return 1; } bool isct21(const LINE &L)const { P v=p2-p1; P a=p1; P b1=L.p1,b2=L.p2; lod tmp1=v*(b1-a); lod tmp2=v*(b2-a); if (sgn(tmp1)<0&&sgn(tmp2)<0||sgn(tmp1)>0&&sgn(tmp2)>0) return 0; if (tmp1>tmp2) swap(b1,b2); if (sgn( (b1-a)*(b2-a) )>0) return 1; if (sgn( (b1-a)*(b2-a) )<0) return 0; //最后排除共线但不相交的情况 return L.have1(a)||have2(b1)||have2(b2); } bool isct31(const LINE &L)const { P v=p2-p1; P a=p1; lod tmp1=v*(L.p1-a); lod tmp2=v*(L.p2-a); if (sgn(tmp1)<0&&sgn(tmp2)<0||sgn(tmp1)>0&&sgn(tmp2)>0) return 0; return 1; } bool isct22(const LINE &L)const { if (have2(L.p1)||L.have2(p1)) return 1; P v=vecfrom(L.p1); if (sgn( v%(L.p2-L.p1) )<=0) return 0; v=L.vecfrom(p1); if (sgn( v%(p2-p1) )<=0) return 0; return 1; } bool isct32(const LINE &L)const { if (have3(L.p1)) return 1; P v=vecfrom(L.p1); if (sgn( v%(L.p2-L.p1) )<=0) return 0; return 1; } bool isct33(const LINE &L)const { if (have3(L.p1)) return 1; return sgn( (p2-p1)*(L.p2-L.p1) )!=0; } //前提是不重合且有交点,p1沿p2-p1方向到达L上的长度,负数表示反向 //直线交多边形需要用到 ld dis33(const LINE &L)const { return (L.p1-p1)*(L.p2-p1) / ( (p2-p1)*(L.p2-L.p1) ) * (p2-p1).length(); } P isctPoint(const LINE &L)const { ld len=dis33(L); P v=p2-p1; return p1+v*(len/v.length()); }//直线交点坐标 }; struct CIRCLE { P cent; lod r; void read() { cent.read(); kr(r); } ld area()const { return pi*r*r; } bool have(const P &p)const { return sgn( (p-cent).length()-r ) <=0; }//点在圆内 P LeftcutPoint(const P &p)const { P v=p-cent; ld sita=acos(r/v.length()); v=v.rotate({0,0},sita); v=v/v.length()*r; return cent+v; }//左切点 P RightcutPoint(const P &p)const { P v=p-cent; ld sita=acos(r/v.length()); v=v.rotate({0,0},-sita); v=v/v.length()*r; return cent+v; }//右切点 bool isct3(const LINE &L)const { return sgn(L.dis3from(cent)-r)<=0; }//圆与直线相交 P vecto(const LINE &L)const { P v=L.p2-L.p1; v=v.rotate({0,0},pi/2); if (sgn(v%(L.p1-cent))<0) v=v.rotate({0,0},pi); return v/v.length()*r; }//从圆心垂直射向直线的向量,长度为r P LeftisctPoint(const LINE &L)const { P v=vecto(L); ld d=L.dis3from(cent); ld sita=acos(d/r); return cent+v.rotate({0,0},sita); }//左交点 P RightisctPoint(const LINE &L)const { P v=vecto(L); ld d=L.dis3from(cent); ld sita=acos(d/r); return cent+v.rotate({0,0},-sita); }//右交点 bool separate(const CIRCLE &C)const { ld d=(cent-C.cent).length(); return sgn(r+C.r-d)<=0; }//相离 bool contain(const CIRCLE &C)const { if (sgn(r-C.r)<0) return 0; ld d=(cent-C.cent).length(); return sgn( d+C.r-r)<=0; }//包含 ld isctarea(const CIRCLE &C)const { if (separate(C)) return 0; if (contain(C)) return C.area(); if (C.contain(*this)) return area(); ld d=(cent-C.cent).length(); ld ang1=acos( (r*r+d*d-C.r*C.r)/2/r/d ); ld ang2=acos( (C.r*C.r+d*d-r*r)/2/C.r/d); return ang1*r*r+ang2*C.r*C.r -r*r*sin(2*ang1)/2-C.r*C.r*sin(2*ang2)/2; }//圆相交面积,分两个三角形减,否则被codeforces卡精度 }; struct TRIANGLE { P a[3]; void read() { for (int i=0;i<3;i++) a[i].read(); } ld area()const { ld ret=0; for (int i=0;i<3;i++) ret+=a[i]*a[(i+1)]; return abs(ret); } P center1()const { return (a[0]+a[1]+a[2])/3; }//重心 P center2()const { LINE L1={a[0],a[1]}; LINE L2={a[1],a[2]}; return L1.midLINE().isctPoint(L2.midLINE()); }//外心 P center3()const { P v0=(a[1]-a[0]).midvec(a[2]-a[0]); P v1=(a[0]-a[1]).midvec(a[2]-a[1]); LINE L1={a[0],a[0]+v0}; LINE L2={a[1],a[1]+v1}; return L1.isctPoint(L2); }//内心 bool have(const P &p)const { lod tmp1=0; for (int i=0;i<3;i++) tmp1+=a[i]*a[(i+1)%3]; tmp1=abs(tmp1); lod tmp2=0; for (int i=0;i<3;i++) tmp2+=abs( (a[i]-p)*(a[(i+1)%2]-p) ); return sgn(tmp1-tmp2)==0; }//点在三角形内 bool isctLINE1(const LINE &L)const { for (int i=0;i<3;i++) { LINE R={a[i],a[(i+1)%3]}; if (L.isct11(R)) return 1; } return 0; }//与线段相交 bool isctLINE2(const LINE &L)const { for (int i=0;i<3;i++) { LINE R={a[i],a[(i+1)%3]}; if (L.isct21(R)) return 1; } return 0; }//与射线相交 bool isctLINE3(const LINE &L)const { for (int i=0;i<3;i++) { LINE R={a[i],a[(i+1)%3]}; if (L.isct31(R)) return 1; } return 0; }//与直线相交 P FirstisctPoint(const LINE &L)const;//与有向直线第一个交点 P SecondisctPoint(const LINE &L)const;//与有向直线第二个交点 bool isct(const TRIANGLE &TRI)const { for (int i=0;i<3;i++) { LINE L={a[i],a[(i+1)%3]}; for (int j=0;j<3;j++) { LINE R={TRI.a[j],TRI.a[(j+1)%3]}; if (L.isct11(R)) return 1; } } return 0; }//三角形相交 bool contain(const TRIANGLE &TRI)const { for (int j=0;j<3;j++) if (!have(TRI.a[j])) return 0; return 1; }//当前三角形包含TRI bool separate(const TRIANGLE &TRI)const { return !isct(TRI)&&!contain(TRI)&&!TRI.contain(*this); }//互相分离 ld isctarea(const TRIANGLE &TRI)const; }; const int POLNUM=1005; struct PL { ld len; int v; }stk[POLNUM]; int top; bool cmplen(const PL &a,const PL &b) { return a.len<b.len; } P cent; bool cmpang(const P &p1,const P &p2) { int tmp=sgn( (p1-cent).ang() - (p2-cent).ang() ); if (tmp!=0) return tmp<0; return (p1-cent).length() < (p2-cent).length(); } struct POLYGON { int n; P a[POLNUM]; void read(int k) { for (int i=1;i<=k;i++) a[i].read(); n=k; } void ChangetoConvex() { for (int i=2;i<=n;i++) if (a[i].x<a[1].x||a[i].x==a[1].x&&a[i].y<a[1].y) swap(a[1],a[i]); cent=a[1]; sort(a+2,a+n+1,cmpang); int top=2; for (int i=3;i<=n;i++) { while(top>=2&& sgn((a[top]-a[top-1])*(a[i]-a[top]))<=0 ) top--; a[++top]=a[i]; } n=top; }//变凸包!(逆时针) ld Clength()const { ld ret=0; for (int i=2;i<=n;i++) ret+=(a[i]-a[i-1]).length(); if (n>2) ret+=(a[1]-a[n]).length(); //防止n==2重复计算 return ret; }//周长 bool have(const P p) { int k,d1,d2,wn=0; a[0]=a[n]; for (int i=1;i<=n;i++) { LINE L={a[i-1],a[i]}; if (L.have1(p)) return 1; k=sgn( (a[i]-a[i-1])*(p-a[i-1]) ); d1=sgn( a[i-1].y-p.y ); d2=sgn( a[i].y-p.y ); if (k>0&&d1<=0&&d2>0) wn++; if (k<0&&d2<=0&&d1>0) wn--; } return wn!=0; }//点在多边形内 ld cutlength(const LINE &L) { a[0]=a[n]; top=0; for (int i=1;i<=n;i++) { LINE R={a[i-1],a[i]}; lod s1=sgn( (L.p2-L.p1)*(R.p1-L.p1) ); lod s2=sgn( (L.p2-L.p1)*(R.p2-L.p1) ); if (s1<0&&s2<0||s1==0&&s2==0||s1>0&&s2>0) continue; if (s1<s2) stk[++top]={L.dis33(R),(s1!=0&&s2!=0?2:1)}; else stk[++top]={L.dis33(R),(s1!=0&&s2!=0?-2:-1)}; } sort(stk+1,stk+top+1,cmplen); int cnt=0; ld ret=0; for (int i=1;i<=top;i++) { if (cnt) ret+=stk[i].len-stk[i-1].len; cnt+=stk[i].v; } return ret; }//直线和多边形的交线总长,两个多边形一顺一逆可求只被覆盖一次的长度,多个同方向可求直线与多个多边形的交线总长 bool isct(const POLYGON &POL)const { for (int i=2;i<=n;i++) for (int j=2;j<=POL.n;j++) { LINE L1={a[i-1],a[i]}; LINE L2={POL.a[j-1],POL.a[j]}; if (L1.isct11(L2)) return 1; } return 0; }//多边形相交,当前是两链相交判断 ld isctarea(const POLYGON &POL)const; }; ///////////////////////////////////////// //hdu5572 P a,v,b; CIRCLE c; bool solve() { LINE L={a,a+v}; P foot=L.footfrom(c.cent); if (c.have(foot)&&L.have2(foot)) { P p1=c.LeftisctPoint(L); P p2=c.RightisctPoint(L); P bc; if ((p1-a).length()<(p2-a).length()) bc=p1; else bc=p2; LINE R={c.cent,bc}; P a2=R.symP(a); LINE L1={a,bc},L2={bc,a2}; if (L1.have1(b)||L2.have2(b)) return 1; return 0; } else return L.have2(b); } int main() { int t; scanf("%d",&t); for (int cas=1;cas<=t;cas++) { c.read(); a.read(); v.read(); b.read(); printf("Case #%d: %s\n",cas,solve()?"Yes":"No"); } }
2022年11月08日 22:11
SBT bank (State Bank of Travancore) was among Indian best and major banking facility established in 1945. The Bank’s headquartered in Thiruvananthapuram, Kerala. The State Bank of Travancore later merged with State bank of India SBI making a strong collaboration. The Bank offers different banking services to millions of customers in the country with over 15,000 branches. onlinesbi.sbi SBI bank has five major associates, one being the state bank of Travancore.
2022年12月19日 00:51
Have you moved to a new city? Or recently changed your address? Don’t forget to change your Aadhaar with your new address. As a result, it is important that all of your data and details on the Aadhaar card be correct. uidai address change Otherwise, you may be unable to benefit from government schemes offered by Union & State Govt. If your address details have changed, you must apply for an Aadhaar Card Update immediately. There might be several reasons why you need to modify the address on your Aadhar card.